
-- Please ensure to run cells in chronological order. "df" and other variables are constantly being
remodified. --

In [333]: #Data analysis libraries
import pandas as pd
import matplotlib as mlp
import matplotlib.pyplot as plt
import altair as alt
import numpy as np
import seaborn as sns
%matplotlib inline  
 
#Prediction library
import sklearn 
 
#Image uploader
from IPython.display import Image

My first diamonds data set contains attributes of diamonds such as price, cut, color, and clarity. It has
10 of those variables (columns) and more than 53,000 diamonds (rows). I will be focusing on price
(US dollars) as the main variable and will be exploring some of the 4cs of diamonds:

carat: weight of the diamond (0.2-5.01) 

 

cut: quality of diamond (Fair, Good, Very Good, Premium, Ideal) 

 

color: how discolored it is (J (worst or discolored) to D (best or

 colorless)) 

 

clarity: how clear of blemishes the diamond is ((I1 (worst), SI2, S

I1, VS2, VS1, VVS2, VVS1, IF (best)) 

 

 

There will be detailed descriptions of the 4Cs, all from < https://4cs.gia.edu > under "4Cs Education."

This notebook will be divided into four sections: 1) Dataset Analysis; 2) Prediciting diamond prices
with sklearn; 3) Combining datasets 4) Ethical implications

1. Dataset Analysis
In [323]: df = pd.read_csv('diamonds.csv', index_col=0)

df.head()

In [2]: df.isnull().values.any() #I have no missing values

The next block of code shows that there are three data types: floats, integers, and objects. More
simply:

Qualitative features: cut, color, clarity 

Quantitative features: carat, dept, table, price, X, Y, Z

In [3]: df.info()

In [332]: Image(filename="cut.png")

1. What is the average price of all diamonds based
on quality (cut)?

Remeber that cut is quality of diamonds. Here is their range: Fair, Good, Very Good, Premium, Ideal.

The groupby function is used to split data based on some criteria. Below, left to right, we are taking
cut (all distinct qualities of diamonds), grabing their prices and, simultaneously, the mean of those
prices, and plotting them.

Alternatively, you can always find the average price of one quality type of diamond by using the
commented code in the block.

The block below shows that ideal diamonds have the lowest average price and premium diamonds
have the highest average price.

In [90]: df.groupby('cut').price.mean().plot()
#df[df.cut == "Ideal"].price.mean()

I had a comment on my previous exporatory note, which I equally shared: it is suprising that ideal
diamonds had the lowest average price among all other types. I used the visualization graph below
and found that most of the recorded values in my dataset were for ideal diamonds. This means that
this dataset is biased. In order to arrive at an unbiased average price, there needs to be an equal
number of types of diamonds to really compare average prices.

In [91]: sns.countplot(df["cut"])

In [340]: Image(filename="diamondcarat.png")

In [338]: Image(filename="diamondcarat1.png")

1.2. What is the relationship between price and
carat weight?

Usually, carat weight has the most significant affect on price. However, the graph below shows that
carat weight varies with price. This means that the price is infulenced by all the 4Cs of diamonds
combined. This makes sense due to various reasons. No matter how heavy the diamond is: 1) the
fairer quality it has, 2)the more discolored it is, 3) and the more unclear it is, the less expensive it will
be. Therefore, price cannot be determined based on carat weight alone, but rather on all
aforementioned attributes.

In [6]: alt.data_transformers.disable_max_rows()
alt.Chart(df).mark_point().encode( 
    x = 'carat', 
    y = "price"
)

In [336]: Image(filename="clarity.png")

1.3. How does clarity influence price of
diamonds?

Remember that we have a scale for clarity from worst to best:

(I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best) 

 

Below, we're using boxplots to analyze clarity's influence on price of diamonds.

As you can see, VS1 and VS2 influence price equally. These two also bring the highest profit margin
as most diamonds of VS1 and VS2 clarity fall in the upper quartile.

In [92]: alt.Chart(df).mark_boxplot().encode(x='clarity', y='price')

It is important to note that our data is skewed due to unequal number of diamonds for each clarity
type. Here, you might question why IF(best) and VVS1 (next best) wouldn't yield the highest profit
margin. This is because both are disprportiantely presented in the data. The pie chart below
demonstrates this.

In [94]: df.groupby('clarity')['clarity'].agg('count').plot(kind='pie',title='Group
-By Clarity',autopct='%.2f')

2. Predicting Diamond Prices with Sklearn

There are multiple ways for me to predict prices. I will be using Support Vector Regressor (SVR),
which is different from (but very related to) Support Vector Machines (SVM).

SVR is a classifier. Classifiers perform classification, prediciting discrete categorical labels. SVR is a
regressor. Regressors perform regression, predicitng continuous ordered variables.

Both use very similar algorithems, but predict different types of variables.

This information was presented by this source and it helped me understand it, although it is not
verbally explained in English: https://www.youtube.com/watch?v=dxu-beXTb3c

My dataset has some categorical values. The code block below creates dictionaries and iterates over
our dicts; this will return numerical values for all categorical ones in my dataset.

Note that, here, you can also import LabelEncoder from sklearn.preprocessing. Both of these
methods may influence our prediction. Our model will think that 2 is two times heavier than the
category that has been assigned 1.

To solve this, you can use OneHotEncoder, but ... that'll take me two years to understand, so let's
keep it simple :D

In [305]: #create disctionaries for categorical values
cut_dict = {"Fair": 1, "Good": 2, "Very Good": 3, "Premium": 4, "Ideal": 5
}
clarity_dict = {"I3": 1, "I2": 2, "I1": 3, "SI2": 4, "SI1": 5, "VS2": 6, 
"VS1": 7, "VVS2": 8, "VVS1": 9, "IF": 10, "FL": 11}
color_dict = {"J": 1,"I": 2,"H": 3,"G": 4,"F": 5,"E": 6,"D": 7} 
 
#assign dicts to features in dataset
df['cut'] = df['cut'].map(cut_dict)
df['clarity'] = df['clarity'].map(clarity_dict)
df['color'] = df['color'].map(color_dict)
df.head()

Now that we have complete quantitative values, we need to ensure that our machine does not
"study" patterns in a biased sense. Here, we shuffle all data all while maintaining respective values.
You may run this multiple times to ensure that it shuffles.

In [306]: from sklearn import svm
df = sklearn.utils.shuffle(df) #shuffle all data to avoid biased predictio
ns
df.head()

We must specify the features (explanatory variables or uppercase X) that will allow us to predict price
of all diamonds (dependent variable or lowercase y). Test the next cell by running/typing "X". Note
that the shuffled data is transferred to this cell as well.

In [307]: X = df.drop("price", axis=1).values # X = all features that inform label y
y = df["price"].values #y = price

Next, I would like to scale my data. Understanding scaling requires basic statistics understanding. If I
work with my original data, my points on a 2-D graph will be very distant. We use scale down our
data to avoid sparsity . The problem with sparsity is that it is biased or skewed. This follows the
concepts of Standardization and Normalzation. Doing these by hand on a large dataset will take
years, machine learning and preprocessing makes everything easier.

In [310]: from sklearn import preprocessing  
X = preprocessing.scale(X)

Next, we split our training and testing data. For complete comprehension, please pay attention to the
comments below.

In [312]: #split data into training and testing
test_data = 100 
 
#the data our model will train on or fit against
X_train = X[:-test_data] #train data up to our test size or last 100
y_train = y[:-test_data]  
 
#test our model on this data, this data the model will never see (out-of-s
ample)
X_test = X[-test_data:] #the last 100
y_test = y[-test_data:]

Below, the purpose of kernel is to take data as input and transform it into the desired form. Linear
kernel will take our data and transform it to such.

In second line below, we're doing the training, called "fit."

In [325]: import warnings
warnings.filterwarnings('ignore')
clf = svm.SVR(kernel = "linear") #identify our classifier
clf.fit(X_train, y_train) #begin training

Below, we will test how good our model did prediciting prices for our 100 diamonds (our test_data).
The scoring used is "R squared," or the coefficient of determination in statistics. Here are two
important notes:

1. R^2: scoring is between 0 and 1, 1 being good/best 

2. SVM classifier: scores either 0% or 100%, in other words, right

 or wrong (True or False).

In [326]: clf.score(X_test, y_test)

Remember, with regression, predicition is almost never the exact price, nor is it necessarily built to
predict exact prices nonethless. From my first project proposal, I predicted a 90% accuracy score.
We did fairly well.

In [327]: clf = svm.SVR(kernel = "rbf") #identify our classifier
clf.fit(X_train, y_train) #begin training

Below, rbf kernel did worse.

In [328]: clf.score(X_test, y_test)

One improvement for myself would be to test more predicition models. There are many: Linear
regression, RandomForest, KNeighbours and more. It would very interesting to implement a couple
and compare accuracy scores.

3. Combining Two Datasets

--Remember to run this in order!--

The first dataset explores diamond production over time, from 2010-2018. I retreived the data from
The British Geological Survey's Centre for Sustainable Mineral Development (BGS Minerals UK). My
specific dataset can be found here: https://www.bgs.ac.uk/mineralsUK/statistics/wms.cfc?
method=listResults&dataType=Production&commodity=47&dateFrom=2010&dateTo=2018&country=&

Their website also allows you to explore different values like the time frame, data types
(e.g.imports,exports), commodity (e.g. different minerals), and more. Feel free to explore such here:
https://www.bgs.ac.uk/mineralsuk/statistics/wms.cfc?method=searchWMS

In [322]: diamond_prod = pd.read_csv ('diamondproduction.csv', header = 1) #remove t
itle header
diamond_prod.head()

In [198]: diamond_prod.isnull().values.any() #I have missing values

You can visit the data website to see how messy it is. I have wrong column names, empty values,
and symbols/characters. Rows 28-37 are also just notes. All this must be cleaned.

I started dropping every column I could see has NaN values by specifying which they are: 2010,
2011, 2012 and so on. However, in a big dataset, this would be inefficient. One way I could do it is by
dropping every column that has NaN values, this would drop a column of values for all countries. I
dediced to drop Sub-com and any columb that started with "20." I, then, am replacing the unnamed
with the years.

Notice that empty columns are under column "Sub-commodity" and every year; the actual data sits
under "Unnamed:x". In the block below, I started by dropping the "Sub-commodity" as well as every
column under all years (all my years started with "20" so I dropped all such columns). This left me
with "\n\tCountry" and multiple "Unnamed:x".

In [199]: diamond_prod.drop(columns=['Sub-commodity'],inplace=True) #drop Sub_commod
ity
diamond_prod = diamond_prod.loc[:, ~diamond_prod.columns.str.startswith("2
0")] #drop columns starting with "20"
diamond_prod.head(2)

I renamed my columns by overwriting original column names with the new names. My dataset also
had notes* in the ends that all translated as NaN values, I dropped any and all "NaN" values. Luckily
there were two countries that had NaN values, and for every one of their columns.

In [216]: diamond_prod.columns #instate columns
prod_cols = ['Country','2010','2011','2012','2013','2014','2015','2016','2
017','2018'] #list to rename columns
diamond_prod.columns = prod_cols #overwrite original column attributes wit
h new list
diamond_prod = diamond_prod.dropna()#drop any rows that have NaN values
diamond_prod.head()

Cleaning this dataset made me realize something: I now understand why Microsoft is a billionaire
company and I would happily give them my money.

Jokes aside, Excel truly makes it easy to delete and rename and, certainly, companies love that.

On the bright side, I learned to speak computer, somewhat. I'd open my notes app and write out
clear steps to reach a clean dataset (this is pseudo-code!). I hope you can benefit from this tip :).

Anyway, let's start analyzing.

I am interested in seeing an overt-time visualization of the top 5 countries' production based on
overall average. Here are the steps I took:

1. Find mean of all countries and store in/create column  

2. Display largest 5 mean values, with respective countries 

3. Plot the production of those 5 countries over time

In [278]: prod_mean = diamond_prod.assign(mean=diamond_prod.mean(axis=1))
prod_mean.head()

In [279]: prod_mean = prod_mean.nlargest(5,['mean']) #find largest producers from me
an
prod_mean

In the code block above, the mean column has numbers that may look unfamiliar. Instead of
converting, let's read it!

e+ is "x10^n" or "times 10 to the n power." For example Russia's average for carat production is
3.879133x10^7, equal to 38,791,330 million carats.

Now that the top 5 producers are identified, I am dropping the mean column below as it's not needed
and so it won't affect our plotting.

In [281]: prod_mean_drop = prod_mean.drop(['mean'],axis=1) #drop mean column for plo
tting purposes
prod_mean_drop

Here, I had a problem. So big, I downloaded Discord and joined a group to help me with it. I
harassed the server to get any guidance and it worked, after 5 days :D.

The formatting of the data obstructed me from acheiving my desired graph. The problem was that the
years acted as static labels. Instead, I needed my years to be on my x-axis, and values (production
numbers) on the y-axis.

Here are the steps to take:

1. Set country as index 

2. Use .transpose() to switch index and columns. 

In [282]: prod_plot = prod_mean_drop.set_index('Country') #set index
prod_plot

In [283]: prod_plot = prod_plot.transpose() #transpose or switch rows and columns
prod_plot

When plotting "Congo, the Democratic Republic" further below, there was a small issue with the
name. So I renamed it to "DRC" below.

In [286]: rename_DRC = prod_plot.rename(columns={'Congo, Democratic Republic':'DRC'
}, inplace=True) #rename

Finally, plot my five countries. Below the 10**6 displays my numbers in millions, making it more
readable.

In [287]: plt.xlabel('Year')
plt.ylabel('Carats in Millions') 
 
#plot all 5 countries
plt.plot(prod_plot.Russia/10**6)
plt.plot(prod_plot.Botswana/10**6)
plt.plot(prod_plot.DRC/10**6)
plt.plot(prod_plot.Canada/10**6)
plt.plot(prod_plot.Australia/10**6) 
 
 
plt.legend(['Russia','Botswana','DRC','Canada','Australia'])

The second dataset from The Kimberely Process and can be found here:
https://kimberleyprocessstatistics.org/static/pdfs/public_statistics/2016/2016GlobalSummary.pdf

I was interested in how much those carat numbers made. I decided to focus on the year 2016.

To explore more years, visit: https://kimberleyprocessstatistics.org/public_statistics

In [288]: diamond_value = pd.read_csv('diamondvalue.csv',header=3)
diamond_value.head(10)

If you visited the link, you noticed there are multiple headers/titles. I made it easy and started my
header at the 3rd row. There were no NaN values. And at the end, there were notes.

Nonethless I focused on my goal: the dollar value of the carats produced by one or more of my 5
countries from the previous dataset.

Below is my simple cleaning of the data and they are as follows:

1. Drop all unneeded columns: I only need my Country and Production 

columns, which were carats produced in    

2016, value in dollars, and dollars per carat(s). 

2. Rename my 4 columns 

3. Analyze

In [70]: df_value = diamond_value.drop(['Volume, cts.1','Value, US$.1','US$ / cts.
1','Volume, cts.2','Value, US$.2','US$ / cts.2', 
                              'Import','Export'],axis =1) #drop last 8 col
umns
df_value.head()

In [74]: df_value.columns = ['Country', 'Carats','Value/US$','US$/Carat'] #rename c
olumns
df_value.head()

I could not find "Russia" in the dataset, our largest carat producer over 10 year from our last dataset.
I wanted to ensure that it was not under a different name and, indeed, it was.

Below, all rows that start with "Rus" are displayed. I was able to find our 5th country, Australia. And I
implemented the same search method for DRC.

In [289]: search="Rus"
bool_series = df_value["Country"].str.startswith(search, na = False)  
df_value[bool_series]

In [90]: df_value.loc[df_value['Country'] == 'Australia']

In [91]: search='Cong'
bool_series = df_value["Country"].str.startswith(search, na = False)  
df_value[bool_series]

Here are the results written out:

1. Russia from our first dataset is called "Russian Federation" her

e and its 40 million carat value is $3.5  

billion dollars. 

1. Australia's 13 million carat value is $216 million dollars.
A. Democratic Republic of Congo's (DRC) 15 million carat value is $135 million dollars.

Notice the value difference between Australia and DRC.

4. Ethical Implications

One ethical implication, which O'Neill discusses in her WMD book, is that data can be very biased. I
saw this when exploring my research questions. I made conclusions in my exploratory notebook
without realizing its their underlying reasons.

Another one is how my first diamonds dataset is neutral. I chose it to be neutral to focus on training a
prediction model free from any biases. For the purpose of my education, it worked.

However, I began to explore more datasets about diamonds. Diamonds are a commodity that has
extreme political and social implications. I looked endlessly for conflict or blood diamonds datasets,
but I could not find any. However, I wonder, and are almost certain that, that the latter two datasets I
used include blood diamond production and exchange. I wonder to what extend are these included
or ruled out and to what extend do companies like Kimberely engage in ethical trade.

I discussed more of the challnges, limitations, or otherwise, of all the datasets and methods used
through out the notebook.

Out[323]:
carat cut color clarity depth table price x y z

1 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43

2 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31

3 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31

4 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63

5 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75

Out[2]: False

<class 'pandas.core.frame.DataFrame'> 
Int64Index: 53940 entries, 1 to 53940 
Data columns (total 10 columns): 
carat      53940 non-null float64 
cut        53940 non-null object 
color      53940 non-null object 
clarity    53940 non-null object 
depth      53940 non-null float64 
table      53940 non-null float64 
price      53940 non-null int64 
x          53940 non-null float64 
y          53940 non-null float64 
z          53940 non-null float64 
dtypes: float64(6), int64(1), object(3) 
memory usage: 4.5+ MB 

Out[332]:

Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1be0b5d0>

Out[91]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1bd1e790>

Out[340]:

Out[338]:

Out[6]:

Out[336]:

Out[92]:

Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x1a18fcdc90>

Out[305]:
carat cut color clarity depth table price x y z

1 0.23 5 6 4 61.5 55.0 326 3.95 3.98 2.43

2 0.21 4 6 5 59.8 61.0 326 3.89 3.84 2.31

3 0.23 2 6 7 56.9 65.0 327 4.05 4.07 2.31

4 0.29 4 2 6 62.4 58.0 334 4.20 4.23 2.63

5 0.31 2 1 4 63.3 58.0 335 4.34 4.35 2.75

Out[306]:
carat cut color clarity depth table price x y z

19060 1.00 4 4 8 62.8 59.0 7840 6.43 6.38 4.02

42918 0.53 2 5 5 63.8 58.0 1363 5.17 5.12 3.28

7651 0.90 3 4 6 61.3 59.0 4269 6.15 6.21 3.79

13047 0.26 3 6 6 62.8 58.0 601 4.00 4.06 2.53

14677 1.02 2 4 6 63.6 57.0 5922 6.41 6.38 4.07

Out[325]: SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, 
    gamma='auto_deprecated', kernel='linear', max_iter=-1, shrinking=True, 
    tol=0.001, verbose=False)

Out[326]: 0.8995128315523617

Out[327]: SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, 
    gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True, 
    tol=0.001, verbose=False)

Out[328]: 0.6676236767179079

Out[322]:

\n\tCountry Sub-
commodity 2010 Unnamed:

3 2011 Unnamed:
5 2012 Unnamed:

7 2013 Unnamed:
9

0 Angola NaN NaN 8362139.0 NaN 8328519.0 NaN 8330996.0 NaN 8601696.0

1 Australia NaN NaN 9997752.0 NaN 7561487.0 NaN 8625996.0 NaN 11481749.0

2 Botswana NaN NaN 22019000.0 NaN 22903000.0 NaN 20478000.0 NaN 22597000.0

3 Brazil NaN NaN 25394.0 NaN 45536.0 NaN 46292.0 NaN 49166.0

4 Cameroon NaN (b)* 6000.0 (b)* 6000.0 (b)* 5000.0 (b)* 5000.0

Out[198]: True

Out[199]:

\n\tCountry Unnamed:
3

Unnamed:
5

Unnamed:
7

Unnamed:
9

Unnamed:
11

Unnamed:
13

Unnamed:
15

Un

0 Angola 8362139.0 8328519.0 8330996.0 8601696.0 8791340.0 9018942.0 9021767.0 94

1 Australia 9997752.0 7561487.0 8625996.0 11481749.0 9288118.0 13560795.0 13958000.0 171

Out[216]:
Country 2010 2011 2012 2013 2014 2015 2016

0 Angola 8362139.0 8328519.0 8330996.0 8601696.0 8791340.0 9018942.0 9021767.0

1 Australia 9997752.0 7561487.0 8625996.0 11481749.0 9288118.0 13560795.0 13958000.0 1

2 Botswana 22019000.0 22903000.0 20478000.0 22597000.0 24658000.0 20824000.0 20954000.0 2

3 Brazil 25394.0 45536.0 46292.0 49166.0 56923.0 31826.0 183500.0

4 Cameroon 6000.0 6000.0 5000.0 5000.0 6000.0 4500.0 3000.0

Out[278]:
Country 2010 2011 2012 2013 2014 2015 2016

0 Angola 8362139.0 8328519.0 8330996.0 8601696.0 8791340.0 9018942.0 9021767.0

1 Australia 9997752.0 7561487.0 8625996.0 11481749.0 9288118.0 13560795.0 13958000.0 1

2 Botswana 22019000.0 22903000.0 20478000.0 22597000.0 24658000.0 20824000.0 20954000.0 2

3 Brazil 25394.0 45536.0 46292.0 49166.0 56923.0 31826.0 183500.0

4 Cameroon 6000.0 6000.0 5000.0 5000.0 6000.0 4500.0 3000.0

Out[279]:
Country 2010 2011 2012 2013 2014 2015 2016

19 Russia 34856600.0 35139800.0 34927650.0 37884140.0 38303500.0 41912390.0 40322030.0

2 Botswana 22019000.0 22903000.0 20478000.0 22597000.0 24658000.0 20824000.0 20954000.0

9
Congo,

Democratic
Republic

16964000.0 19249057.0 19154000.0 16653000.0 14689000.0 14284000.0 12377000.0

5 Canada 11773000.0 10795000.0 10529215.0 10561600.0 12082000.0 11677472.0 11103500.0

1 Australia 9997752.0 7561487.0 8625996.0 11481749.0 9288118.0 13560795.0 13958000.0

Out[281]:
Country 2010 2011 2012 2013 2014 2015 2016

19 Russia 34856600.0 35139800.0 34927650.0 37884140.0 38303500.0 41912390.0 40322030.0

2 Botswana 22019000.0 22903000.0 20478000.0 22597000.0 24658000.0 20824000.0 20954000.0

9
Congo,

Democratic
Republic

16964000.0 19249057.0 19154000.0 16653000.0 14689000.0 14284000.0 12377000.0

5 Canada 11773000.0 10795000.0 10529215.0 10561600.0 12082000.0 11677472.0 11103500.0

1 Australia 9997752.0 7561487.0 8625996.0 11481749.0 9288118.0 13560795.0 13958000.0

Out[282]:
2010 2011 2012 2013 2014 2015 2016

Country

Russia 34856600.0 35139800.0 34927650.0 37884140.0 38303500.0 41912390.0 40322030.0 4261

Botswana 22019000.0 22903000.0 20478000.0 22597000.0 24658000.0 20824000.0 20954000.0 2290

Congo,
Democratic

Republic
16964000.0 19249057.0 19154000.0 16653000.0 14689000.0 14284000.0 12377000.0 1540

Canada 11773000.0 10795000.0 10529215.0 10561600.0 12082000.0 11677472.0 11103500.0 2319

Australia 9997752.0 7561487.0 8625996.0 11481749.0 9288118.0 13560795.0 13958000.0 1713

Out[283]:
Country Russia Botswana Congo, Democratic Republic Canada Australia

2010 34856600.0 22019000.0 16964000.0 11773000.0 9997752.0

2011 35139800.0 22903000.0 19249057.0 10795000.0 7561487.0

2012 34927650.0 20478000.0 19154000.0 10529215.0 8625996.0

2013 37884140.0 22597000.0 16653000.0 10561600.0 11481749.0

2014 38303500.0 24658000.0 14689000.0 12082000.0 9288118.0

2015 41912390.0 20824000.0 14284000.0 11677472.0 13560795.0

2016 40322030.0 20954000.0 12377000.0 11103500.0 13958000.0

2017 42614780.0 22900000.0 15404000.0 23198761.0 17135000.0

2018 43161058.0 27373000.0 15131210.0 23239926.0 14008054.0

Out[287]: <matplotlib.legend.Legend at 0x1a20988f10>

Out[288]:
Unnamed:

0 Volume, cts Value, US$ US$ /
cts

Volume,
cts.1 Value, US$.1 US$ /

cts.1 Volu

0 Angola 9,021,467.07 $1,079,411,359.37 $119.65 0 $0.00 $0.00 8,5

1 Armenia 0 $0.00 $0.00 298,701.37 $59,236,318.88 $198.31

2 Australia 13,957,722.00 $216,337,288.00 $15.50 62,489.95 $6,703,906.91 $107.28 13,8

3 Bangladesh 0 $0.00 $0.00 0 $0.00 $0.00

4 Belarus 0 $0.00 $0.00 197,680.23 $60,321,682.40 $305.15 1

5 Botswana 20,501,000.00 $2,845,948,820.10 $138.82 7,942,986.51 $1,754,037,944.38 $220.83 31,7

6 Brazil 183,515.69 $50,025,426.37 $272.59 2,073.53 $42,940.72 $20.71 1

7 Cambodia 0 $0.00 $0.00 87,375.57 $18,454,933.63 $211.21

8 Cameroon 993.59 $176,728.74 $177.87 0 $0.00 $0.00

9 Canada 13,036,449.00 $1,397,308,511.77 $107.18 383,906.76 $56,474,368.49 $147.10 13,0

Out[70]:
Unnamed: 0 Volume, cts Value, US$ US$ / cts

0 Angola 9,021,467.07 $1,079,411,359.37 $119.65

1 Armenia 0 $0.00 $0.00

2 Australia 13,957,722.00 $216,337,288.00 $15.50

3 Bangladesh 0 $0.00 $0.00

4 Belarus 0 $0.00 $0.00

Out[74]:
Country Carats Value/US$ US$/Carat

0 Angola 9,021,467.07 $1,079,411,359.37 $119.65

1 Armenia 0 $0.00 $0.00

2 Australia 13,957,722.00 $216,337,288.00 $15.50

3 Bangladesh 0 $0.00 $0.00

4 Belarus 0 $0.00 $0.00

Out[289]:
Country Carats Value/US$ US$/Carat

39 Russian Federation 40,322,030.00 $3,578,732,550.00 $88.75

Out[90]:
Country Carats Value/US$ US$/Carat

2 Australia 13,957,722.00 $216,337,288.00 $15.50

Out[91]:
Country Carats Value/US$ US$/Carat

12 Congo, Democratic Republic of 15,559,447.19 $135,215,300.00 $8.69

13 Congo, Republic of 12,109.66 $311,676.77 $25.74

https://4cs.gia.edu/
https://www.youtube.com/watch?v=dxu-beXTb3c
https://www.bgs.ac.uk/mineralsUK/statistics/wms.cfc?method=listResults&dataType=Production&commodity=47&dateFrom=2010&dateTo=2018&country=&agreeToTsAndCs=agreed
https://www.bgs.ac.uk/mineralsuk/statistics/wms.cfc?method=searchWMS
https://kimberleyprocessstatistics.org/static/pdfs/public_statistics/2016/2016GlobalSummary.pdf
https://kimberleyprocessstatistics.org/public_statistics

